Afshin Dehghan

Learn More
There is a large variety of trackers, which have been proposed in the literature during the last two decades with some mixed success. Object tracking in realistic scenarios is a difficult problem, therefore, it remains a most active area of research in computer vision. A good tracker should perform well in a large number of videos involving illumination(More)
Data association is an essential component of any human tracking system. The majority of current methods, such as bipartite matching, incorporate a limited-temporal-locality of the sequence into the data association problem, which makes them inherently prone to IDswitches and difficulties caused by long-term occlusion, cluttered background, and crowded(More)
Single camera-based multiple-person tracking is often hindered by difficulties such as occlusion and changes in appearance. In this paper, we address such problems by proposing a robust part-based tracking-by-detection framework. Human detection using part models has become quite popular, yet its extension in tracking has not been fully explored. Our(More)
Recent years have seen a major push for face recognition technology due to the large expansion of image sharing on social networks. In this paper, we consider the difficult task of determining parent-offspring resemblance using deep learning to answer the question "Who do I look like?" Although humans can perform this job at a rate higher than chance, it is(More)
Data association is the backbone to many multiple object tracking (MOT) methods. In this paper we formulate data association as a Generalized Maximum Multi Clique problem (GMMCP). We show that this is the ideal case of modeling tracking in real world scenario where all the pairwise relationships between targets in a batch of frames are taken into account.(More)
In this paper we show that multiple object tracking (MOT) can be formulated in a framework, where the detection and data-association are performed simultaneously. Our method allows us to overcome the confinements of data association based MOT approaches; where the performance is dependent on the object detection results provided at input level. At the core(More)
We propose an approach to improve the detection performance of a generic detector when it is applied to a particular video. The performance of offline-trained objects detectors are usually degraded in unconstrained video environments due to variant illuminations, backgrounds and camera viewpoints. Moreover, most object detectors are trained using Haar-like(More)
In this paper, we describe the evaluation results for TRECVID 2012 Multimedia Event Detection (MED) and Multimedia Event Recounting (MER) tasks as a part of SRI-Sarnoff AURORA system that is developed under the IARPA ALDDIN program. In AURORA system, we incorporated various low-level features that capture color, appearance, motion, and audio information in(More)
Manual analysis of pedestrians and crowds is often impractical for massive datasets of surveillance videos. Automatic tracking of humans is one of the essential abilities for computerized analysis of such videos. In this keynote paper, we present two state of the art methods for automatic pedestrian tracking in videos with low and high crowd density. For(More)
This paper describes the details of Sighthound’s fully automated age, gender and emotion recognition system. The backbone of our system consists of several deep convolutional neural networks that are not only computationally inexpensive, but also provide state-of-theart results on several competitive benchmarks. To power our novel deep networks, we(More)