Afonso C. Silva

Learn More
Development of efficient imaging techniques to trace neuronal connections would be very useful. Manganese ion (Mn2+) is an excellent T1 contrast agent for magnetic resonance imaging (MRI). Four reports utilizing radioactive Mn2+ in fish and rat brain indicate that Mn2+ may be useful for tracing neuronal connections. Therefore, the purpose of this work was(More)
The blood oxygenation level-dependent (BOLD) contrast mechanism can be modeled as a complex interplay between CBF, cerebral blood volume (CBV), and CMRO2. Positive BOLD signal changes are presumably caused by CBF changes in excess of increases in CMRO2. Because this uncoupling between CBF and CMRO2 may not always be present, the magnitude of BOLD changes(More)
The nature of vascular contribution to blood oxygenation level dependent (BOLD) contrast used in functional MRI (fMRI) is poorly understood. To investigate vascular contributions at an ultrahigh magnetic field of 9.4 T, diffusion-weighted fMRI techniques were used in a rat forepaw stimulation model. Tissue and blood T(2) values were measured to optimize the(More)
Spatial specificities of the calcium-dependent synaptic activity, hemodynamic-based blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) fMRI were quantitatively compared in the same animals. Calcium-dependent synaptic activity was imaged by exploiting the manganese ion (Mn++) as a calcium analog and an MRI contrast agent at 9.4 T.(More)
Manganese-enhanced MRI (MEMRI) is being increasingly used for MRI in animals due to the unique T1 contrast that is sensitive to a number of biological processes. Three specific uses of MEMRI have been demonstrated: to visualize activity in the brain and the heart; to trace neuronal specific connections in the brain; and to enhance the brain cytoarchitecture(More)
Visualizing brain anatomy in vivo could provide insight into normal and pathophysiology. Here it is demonstrated that neuroarchitecture can be detected in the rodent brain using MRI after systemic MnCl2. Administration of MnCl2 leads to rapid T1 enhancement in the choroid plexus and circumventricular organs, which spreads to the CSF space in ventricles and(More)
The blood oxygenation level-dependent (BOLD) response to somatosensory stimulation was measured in alpha-chloralose-anesthetized rats. BOLD fMRI was obtained at 40-ms temporal resolution and spatial resolution of 200 x 200 x 2,000 microm(3) by using a gated activation paradigm in an 11.7 T MRI. Results show a consistent heterogeneity of fMRI onset times and(More)
A multislice EPI sequence was used to obtain functional MR images of the entire rat brain with BOLD contrast at 11.7 T. Ten to 11 slices covering the rat brain, with an in-plane resolution of 300 microm, provided enough sensitivity to detect activation in brain regions known to be involved in the somatosensory pathway during stimulation of the forelimbs.(More)
The close correspondence between neural activity in the brain and cerebral blood flow (CBF) forms the basis for modern functional neuroimaging methods. Yet, the temporal characteristics of hemodynamic changes induced by neuronal activity are not well understood. Recent optical imaging observations of the time course of deoxyhemoglobin (HbR) and(More)
Manganese ion (Mn2+) is an essential metal that participates as a cofactor in a number of critical biological functions, such as electron transport, detoxification of free radicals and synthesis of neurotransmitters. Mn2+ can enter excitable cells using some of the same transport systems as Ca2+ and it can bind to a number of intracellular sites because it(More)