Learn More
Clear cell renal carcinomas (ccRCCs) can display intratumor heterogeneity (ITH). We applied multiregion exome sequencing (M-seq) to resolve the genetic architecture and evolutionary histories of ten ccRCCs. Ultra-deep sequencing identified ITH in all cases. We found that 73-75% of identified ccRCC driver aberrations were subclonal, confounding estimates of(More)
The cohesin complex is at the heart of many chromosomal activities, including sister chromatid cohesion and transcriptional regulation. Cohesin loading onto chromosomes depends on the Scc2-Scc4 cohesin loader complex, but the chromatin features that form cohesin loading sites remain poorly understood. Here we show that the RSC chromatin remodeling complex(More)
The transcription factor SRF (serum response factor) recruits two families of coactivators, the MRTFs (myocardin-related transcription factors) and the TCFs (ternary complex factors), to couple gene transcription to growth factor signaling. Here we investigated the role of the SRF network in the immediate transcriptional response of fibroblasts to serum(More)
Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key(More)
Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal(More)
RECQL5 is the sole member of the RECQ family of helicases associated with RNA polymerase II (RNAPII). We now show that RECQL5 is a general elongation factor that is important for preserving genome stability during transcription. Depletion or overexpression of RECQL5 results in corresponding shifts in the genome-wide RNAPII density profile. Elongation is(More)
Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs(More)
Graphical Abstract Highlights d A multiomic screening approach examines the UV-induced DNA damage response d Multiple factors are connected to the transcription-related DNA damage response d Melanoma gene STK19 is required for a normal DNA damage response In Brief Boeing et al. investigate the UV-induced DNA damage response by combining a range of proteomic(More)
Cockayne syndrome (CS) is a multisystem disorder with severe neurological symptoms. The majority of CS patients carry mutations in Cockayne syndrome group B (CSB), best known for its role in transcription-coupled nucleotide excision repair. Indeed, because various repair pathways are compromised in patient cells, CS is widely considered a genome instability(More)
Genome instability is a recurring feature of tumorigenesis. Mutation in MLL2, encoding a histone methyltransferase, is a driver in numerous different cancer types, but the mechanism is unclear. Here, we present evidence that MLL2 mutation results in genome instability. Mouse cells in which MLL2 gene deletion can be induced display elevated levels of sister(More)