Adrien Guille

Learn More
Online social networks play a major role in the spread of information at very large scale. A lot of effort have been made in order to understand this phenomenon, ranging from popular topic detection to information diffusion modeling, including influential spreaders identification. In this article, we present a survey of representative methods dealing with(More)
Today, online social networks have become powerful tools for the spread of information. They facilitate the rapid and large-scale propagation of content and the consequences of an information -- whether it is favorable or not to someone, false or true -- can then take considerable proportions. Therefore it is essential to provide means to analyze the(More)
The ever-growing number of people using Twitter makes it a valuable source of timely information. However, detecting events in Twitter is a difficult task, because tweets that report interesting events are overwhelmed by a large volume of tweets on unrelated topics. Existing methods focus on the textual content of tweets and ignore the social aspect of(More)
The ever-growing number of people using Twitter makes it a valuable source of timely information. However, detecting events in Twitter is a difficult task, because tweets that report interesting events are overwhelmed by a large volume of tweets on unrelated topics. Existing methods focus on the textual content of tweets and ignore the social aspect of(More)
This paper describes SONDY, a tool for analysis of trends and dynamics in online social network data. SONDY addresses two audiences: (i) end-users who want to explore social activity and (ii) researchers who want to experiment and compare mining techniques on social data. SONDY helps end-users like media analysts or journalists understand social network(More)
Online social networks play a major role in the spread of information at very large scale and it becomes essential to provide means to analyze this phenomenon. Analyzing information diffusion proves to be a challenging task since the raw data produced by users of these networks are a flood of ideas, recommendations, opinions, etc. The aim of this PhD work(More)
Online social networks play a major role in the spread of information at very large scale and it becomes essential to provide means to analyse this phenomenon. In this paper we address the issue of predicting the temporal dynamics of the information diffusion process. We develop a graph-based approach built on the assumption that the macroscopic dynamics of(More)