Adrianus C. M. Boon

Learn More
BACKGROUND A pandemic H5N1 influenza outbreak would be facilitated by an absence of immunity to the avian-derived virus in the human population. Although this condition is likely in regard to hemagglutinin-mediated immunity, the neuraminidase (NA) of H5N1 viruses (avN1) and of endemic human H1N1 viruses (huN1) are classified in the same serotype. We(More)
UNLABELLED The genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host's immune response to the virus. In humans, it is unclear(More)
House sparrows, European starlings, and Carneux pigeons were inoculated with 4 influenza A (H5N1) viruses isolated from different avian species. We monitored viral replication, death after infection, and transmission to uninfected contact birds of the same species. Sparrows were susceptible to severe infection; 66%-100% of birds died within 4-7 days. High(More)
BACKGROUND Because of continuous circulation in different animal species and humans, influenza viruses have host-specific phenotypic and genetic features. Reassortment of the genome segments can significantly change virus phenotype, potentially generating virus with pandemic potential. In 2009, a new pandemic influenza virus emerged. OBJECTIVES In this(More)
  • 1