Adriane Leskovar

Learn More
Grp94, the Hsp90 paralog of the endoplasmic reticulum, plays a crucial role in protein secretion. Like cytoplasmic Hsp90, Grp94 is regulated by nucleotide binding to its N-terminal domain. However, the question of whether Grp94 hydrolyzes ATP was controversial. This sets Grp94 apart from other members of the Hsp90 family where a slow but specific turnover(More)
Hsp90 is an ATP-dependent molecular chaperone whose mechanism is not yet understood in detail. Here, we present the first ATPase cycle for the mitochondrial member of the Hsp90 family called Trap1 (tumor necrosis factor receptor-associated protein 1). Using biochemical, thermodynamic, and rapid kinetic methods we dissected the kinetics of the(More)
The dimeric molecular chaperone Hsp90 is required for the activation and stabilization of hundreds of substrate proteins, many of which participate in signal transduction pathways. The activation process depends on the hydrolysis of ATP by Hsp90. Hsp90 consists of a C-terminal dimerization domain, a middle domain, which may interact with substrate protein,(More)
Fluorescent nucleotide analogs are widely used in mechanistic studies of nucleotide binding and utilizing proteins. We describe here an overview of the photophysical parameters of the most popular nucleotide analogs that have a fluorescent N-methylanthraniloyl-group attached at various positions of the nucleotide. Steady state absorption and fluorescence(More)
  • 1