Adriana Pietropaolo

Learn More
We propose a methodology for the description of the secondary structure of proteins, based on assigning a chirality parameter to short aminoacid sequences according to their arrangement in space at a certain time. We validated the method on ideal and crystalline structures, showing that it can assign secondary structures and that this assignment is robust(More)
The interactions of metal ions with chiral molecules are of particular interest for relevant biochemical processes, as many of them are made possible only with a selected chirality of the stereocenters. In this work we report a study of the stereoselectivity of copper(II) complexes with D-trehalose-L-carnosine and D-trehalose-D-carnosine as a prototypical(More)
The ADP/ATP carrier (AAC) of mitochondria has been an early example for elucidating the transport mechanism alternating between the external (c-) and internal (m-) states (M. Klingenberg, Biochim. Biophys. Acta 1778 (2008) 1978-2021). An atomic resolution crystal structure of AAC is available only for the c-state featuring a three repeat transmembrane(More)
The prion protein (PrPC) is a glycoprotein that in mammals, differently from avians, can lead to prion diseases, by misfolding into a beta-sheet-rich pathogenic isoform (PrPSc). Mammal and avian proteins show different N-terminal tandem repeats: PHGGGWGQ and PHNPGY, both containing histidine, whereas tyrosine is included only in the primary sequence of the(More)
The prion protein is a copper binding glycoprotein that in mammals can misfold into a pathogenic isoform leading to prion diseases, as opposed, surprisingly, to avians. The avian prion N-terminal tandem repeat is richer in prolines than the mammal one, and understanding their effect on conformation is of great biological importance. Here we succeeded in(More)
The prion protein (PrP(c)) is a copper-binding glycoprotein that can misfold into a beta-sheet-rich and pathogenic isoform (PrP(sc)) leading to prion diseases. The first non-mammalian PrP(c) was identified in chicken and it was found to keep many structural motifs present in mammalian PrP(c), despite the low sequence identity (approximately 40%) between the(More)
Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies were carried out on copper(II) complexes with chicken prion protein N-terminal fragments, Ac-(PHNPGY)(4)-NH(2), and the mutated residue, Ac-(PHNPGF)(4)-NH(2), to assess the role of tyrosine in the copper coordination. Both thermodynamic and spectroscopic results indicate that chicken prion(More)
Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological(More)
A subset of familial Parkinson's disease (PD) cases is associated with the presence of disease-causing point mutations in human α-synuclein [huAS(wt)], including A53T. Surprisingly, the human neurotoxic amino acid 53T is present in non-primate, wild-type sequences of α-synucleins, including that expressed by mice [mAS(wt)]. Because huAS(A53T) causes(More)
In this study we show the outstanding agreement between simulation and experimental data concerning the efficient stabilization effect by NaCl of Z conformation. We demonstrate by circular dichroism (CD) experiments that Na(+) not only is able to induce a B to Z form transition in a short (GC)3 alternated portion of a sequence having 17 basis, but also is(More)