Learn More
Monodisperse cobalt (Co) nanoparticles (NPs) were synthesized and stabilized against oxidation via reductive annealing at 600 °C. The stable Co NPs are active for catalyzing the oxygen evolution reaction (OER) in 0.1 M KOH, producing a current density of 10 mA/cm(2) at an overpotential of 0.39 V (1.62 V vs RHE, no iR-correction). Their catalysis is superior(More)
MPd (M = Co, or Cu) nanoparticles (NPs) were synthesized by borane-amine reduction of metal acetylacetonates. The size of the MPd NPs was controlled at 3.5 nm and their compositions were tuned by the molar ratios of the metal precursors. These MPd NPs were active catalysts for electrochemical oxidation of formic acid and the Cu30Pd70 NPs showed the highest(More)
Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal(More)
Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm(-2) at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER.
Fully ordered face-centered tetragonal (fct) FePt nanoparticles (NPs) are synthesized by thermal annealing of the MgO-coated dumbbell-like FePt-Fe3O4 NPs followed by acid washing to remove MgO. These fct-FePt NPs show strong ferromagnetism with room temperature coercivity reaching 33 kOe. They serve as a robust electrocatalyst for the oxygen reduction(More)
A facile approach to bimetallic phosphides, Co-Fe-P, by a high-temperature (300 °C) reaction between Co-Fe-O nanoparticles and trioctylphosphine is presented. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are(More)
In the past two decades, the synthetic development of magnetic nanoparticles (NPs) has been intensively explored for both fundamental scientific research and technological applications. Different from the bulk magnet, magnetic NPs exhibit unique magnetism, which enables the tuning of their magnetism by systematic nanoscale engineering. In this review, we(More)
We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of(More)
A simple process to prepare monodisperse ferrimagnetic cobalt-substituted magnetite Co(x)Fe(3-x)O4 nanoparticles is reported. These ferrimagnetic nanoparticles are readily dispersed in hexane, forming a stable ferrimagnetic nanoparticle dispersion, and allowing easy nanoparticle self-assembly. When assembled under an external magnetic field (5.5 kOe), these(More)
  • 1