Adrian Vallin

Learn More
Long-lived butterflies that hibernate as adults are expected to have well-developed antipredation devices as a result of their long exposure to natural enemies. The peacock butterfly, Inachis io, for instance, is a cryptic leaf mimic when resting, but shifts to active defence when disturbed, performing a repeated sequence of movements exposing major(More)
Long stretches of sea and desert often interrupt the migration routes of small songbirds, whose fat reserves must be restored before these can be crossed as they provide no opportunity for refuelling. To investigate whether magnetic cues might enable inexperienced migratory birds to recognize a region where they need to replenish their body fat, we caught(More)
BACKGROUND Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. METHODOLOGY/PRINCIPAL FINDINGS Here we report(More)
Large eyespots on the wings of butterflies and moths have been ascribed generally intimidating qualities by creating a frightening image of a bird or mammal much larger than the insect bearing the eyespots. However, evidence for this anti-predator adaptation has been largely anecdotal and only recently were peacock butterflies, Inachis io, shown to(More)
Recent studies have shown that migratory thrush nightingales (Luscinia luscinia) experimentally treated with multiple changes of the magnetic field simulating a journey to their target stopover area in northern Egypt, increased fuel deposition as expected in preparation to cross the Sahara desert. To investigate the significance of food intake on the body(More)
Butterflies that hibernate exhibit particularly efficient defence against predation. A first line of defence is crypsis, and most hibernating butterflies are leaf mimics. When discovered, some species have a second line of defence; the peacock, I. io, when attacked by a predator flicks its wings open exposing large eyespots and performs an intimidating(More)
Insects that hibernate as adults have a life span of almost a whole year. Hence, they must have extraordinary adaptations for adult survival. In this paper, we study winter survival in two butterflies that hibernate as adults and have multimodal anti-predator defences—the peacock, Inachis io, which has intimidating eyespots that are effective against bird(More)
Bird migration requires high energy expenditure, and long-distance migrants accumulate fat for use as fuel during stopovers throughout their journey. Recent studies have shown that long-distance migratory birds, besides accumulating fat for use as fuel, also show adaptive phenotypic flexibility in several organs during migration. The migratory routes of(More)
Eyespots (patterns of roughly concentric rings) are often thought to have an anti-predator function. Previous experiments have lent support for the intimidation hypothesis by demonstrating a deterring effect of eyespots, but so far there is little evidence for the deflective effect (direction of attacks toward less vital body parts). We studied predators’(More)
  • 1