Adrian R. Krainer

Learn More
Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for(More)
Point mutations in the coding regions of genes are commonly assumed to exert their effects by altering single amino acids in the encoded proteins. However, there is increasing evidence that many human disease genes harbour exonic mutations that affect pre-mRNA splicing. Nonsense, missense and even translationally silent mutations can inactivate genes by(More)
Alternative splicing modulates the expression of many oncogene and tumor-suppressor isoforms. We have tested whether some alternative splicing factors are involved in cancer. We found that the splicing factor SF2/ASF is upregulated in various human tumors, in part due to amplification of its gene, SFRS1. Moreover, slight overexpression of SF2/ASF is(More)
Numerous disease-associated point mutations exert their effects by disrupting the activity of exonic splicing enhancers (ESEs). We previously derived position weight matrices to predict putative ESEs specific for four human SR proteins. The score matrices are part of ESEfinder, an online resource to identify ESEs in query sequences. We have now carried out(More)
SF2 is a protein factor essential for constitutive pre-mRNA splicing in HeLa cell extracts and also activates proximal alternative 5' splice sites in a concentration-dependent manner. This latter property suggests a role for SF2 in preventing exon skipping, ensuring the accuracy of splicing, and regulating alternative splicing. Human SF2 cDNAs have been(More)
We present a systematic analysis of sequence motifs found in metazoan protein factors involved in constitutive pre-mRNA splicing and in alternative splicing regulation. Using profile analysis we constructed a database enriched in protein sequences containing one or more presumptive copies of the RNA-recognition motif (RRM). We provide an accurate alignment(More)
Cancer cells preferentially metabolize glucose by aerobic glycolysis, characterized by increased lactate production. This distinctive metabolism involves expression of the embryonic M2 isozyme of pyruvate kinase, in contrast to the M1 isozyme normally expressed in differentiated cells, and it confers a proliferative advantage to tumor cells. The M1 and M2(More)
SR proteins are nuclear phosphoproteins with a characteristic Ser/Arg-rich domain and one or two RNA recognition motifs. They are highly conserved in animals and plants and play important roles in spliceosome assembly and alternative splicing regulation. We have now isolated and partially sequenced a plant protein, which crossreacts with antibodies to human(More)
We have collected over half a million splice sites from five species-Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana-and classified them into four subtypes: U2-type GT-AG and GC-AG and U12-type GT-AG and AT-AC. We have also found new examples of rare splice-site categories, such as U12-type introns(More)
Alteration of correct splicing patterns by disruption of an exonic splicing enhancer may be a frequent mechanism by which point mutations cause genetic diseases. Spinal muscular atrophy results from the lack of functional survival of motor neuron 1 gene (SMN1), even though all affected individuals carry a nearly identical, normal SMN2 gene. SMN2 is only(More)