Learn More
This investigation was conducted to examine the various theories that have been proposed to explain the enhancement of jumping performance when using an arm swing compared to when no arm swing is used. Twenty adult males were asked to perform a series of maximal vertical jumps while using an arm swing and again while holding their arms by their sides.(More)
Self-organising artificial neural networks were used to reduce the complexity of joint kinematic and kinetic data, which form part of a typical instrumented gait assessment. Three-dimensional joint angles, moments and powers during the gait cycle were projected from the multi-dimensional data space onto a topological neural map, which thereby identified(More)
Most soccer players have a favoured foot for kicking the ball, and it is believed that this preference may lead to an asymmetry in the strength and flexibility of the lower extremities. This study was designed to determine whether asymmetry in strength and flexibility are present in the legs of soccer players.Forty-one elite and sub-elite soccer players(More)
The metatarsophalangeal joint (MPJ) is a significant absorber of energy in sprinting. This study examined the influence of MPJ axis choice and filter cut-off frequency on kinetic variables describing MPJ function during accelerated sprinting. Eight trained sprinters performed maximal sprints along a runway. Three-dimensional high-speed (1000 Hz) kinematic(More)
The effect of increased walking speed on temporal and loading asymmetry was investigated in highly active trans-femoral and trans-tibial amputees. With increasing walking speed, temporal gait variables reduced in duration, particularly on the prosthetic limb, while vertical ground reaction force (vGRF) increased in magnitude, particularly on the intact(More)
In this study, the challenge to maximise the potential of gait analysis by employing advanced methods was addressed by using self-organising neural networks to quantify the deviation of patients' gait from normal. Data including three-dimensional joint angles, moments and powers of the two lower limbs and the pelvis were used to train Kohonen artificial(More)
The vertical jump is widely used as a field test of performance capability, particularly in games like soccer. Invariably some players perform better than others and, while this is usually put down to greater strength or 'explosive power', there is no detailed information to explain how the muscles around the major joints contribute to this performance and(More)
The vertical jump is a widely used activity to develop explosive strength, particularly in plyometric and maximal power training programs. It is a multijoint action that requires substantial muscular effort from primarily the ankle, knee, and hip joints. It is not known if submaximal performances of a vertical jump have a proportional or differential(More)
The long jump has been widely studied in recent years. Two models exist in the literature which define the relationship between selected variables that affect performance. Both models suggest that the critical phase of the long jump event is the touch-down to take-off phase, as it is in this phase that the necessary vertical velocity is generated. Many(More)
The CAREN system is a new and unique device for use in postural and balance research in clinical settings due to its ability to independently perturb the support surface in each of six degrees of freedom. Users of this system need knowledge of its technical performance which is not available. The aim of this study was to determine the technical performance(More)