Adrian K. Arakaki

Learn More
The recently developed TASSER (Threading/ASSembly/Refinement) method is applied to predict the tertiary structures of all CASP6 targets. TASSER is a hierarchical approach that consists of template identification by the threading program PROSPECTOR_3, followed by tertiary structure assembly via rearranging continuous template fragments. Assembly occurs using(More)
Ferredoxin (flavodoxin)-NADP(H) reductases (FNRs) are ubiquitous flavoenzymes that deliver NADPH or low potential one-electron donors (ferredoxin, flavodoxin, adrenodoxin) to redox-based metabolisms in plastids, mitochondria and bacteria. Two great families of FAD-containing proteins displaying FNR activity have evolved from different and independent(More)
We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified(More)
Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation,(More)
EFICAz (Enzyme Function Inference by Combined Approach) is an automatic engine for large-scale enzyme function inference that combines predictions from four different methods developed and optimized to achieve high prediction accuracy: (i) recognition of functionally discriminating residues (FDRs) in enzyme families obtained by a Conservation-controlled HMM(More)
The size and origin of the protein fold universe is of fundamental and practical importance. Analyzing randomly generated, compact sticky homopolypeptide conformations constructed in generic simplified and all-atom protein models, all have similar folds in the library of solved structures, the Protein Data Bank, and conversely, all compact, single-domain(More)
The flavoenzyme ferredoxin–NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin–nicotinamide interaction. Here, we show that this failure(More)
In this study, the immobilization of toxic uranium [U(VI)] mediated by the intrinsic phosphatase activities of naturally occurring bacteria isolated from contaminated subsurface soils was examined. The phosphatase phenotypes of strains belonging to the genera, Arthrobacter, Bacillus and Rahnella, previously isolated from subsurface soils at the US(More)
Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these(More)
MULTIPROSPECTOR, a multimeric threading algorithm for the prediction of protein-protein interactions, is applied to the genome of Saccharomyces cerevisiae. Each possible pairwise interaction among more than 6000 encoded proteins is evaluated against a dimer database of 768 complex structures by using a confidence estimate of the fold assignment and the(More)