Learn More
We present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show(More)
Cytochrome P450 enzymes (P450s) are important in drug metabolism and have been linked to adverse drug reactions. P450s display broad substrate reactivity, and prediction of metabolites is complex. QM/MM studies of P450 reactivity have provided insight into important details of the reaction mechanisms and have the potential to make predictions of metabolite(More)
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined(More)
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically(More)
Modelling of the mechanism of covalent adduct formation by the inhibitor O-arylcarbamate URB524 in FAAH shows that only one of the two possible inhibitor binding orientations is consistent with the experimentally observed irreversible carbamoylation of the nucleophile serine: this is a potentially crucial insight for designing new covalent inhibitors of(More)
FAAH (fatty acid amide hydrolase) is a promising target for the treatment of several central nervous system and peripheral disorders. Combined QM/MM (quantum mechanics/molecular mechanics) calculations have elucidated the role of its unusual catalytic triad in the hydrolysis of oleamide and oleoylmethyl ester substrates, and have identified the productive(More)
Molecular simulation is increasingly demonstrating its practical value in the investigation of biological systems. Computational modelling of biomolecular systems is an exciting and rapidly developing area, which is expanding significantly in scope. A range of simulation methods has been developed that can be applied to study a wide variety of problems in(More)
Molecular modelling and simulation methods are increasingly at the forefront of elucidating mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity and efficiency of catalysis. These methods have the potential to assist in drug discovery and the design of novel protein catalysts. This Tutorial Review highlights some(More)
Combined quantum mechanics/molecular mechanics (QM/MM) modelling has the potential to answer fundamental questions about enzyme mechanisms and catalysis. Calculations using QM/MM methods can now predict barriers for enzyme-catalysed reactions with unprecedented, near chemical accuracy, i.e. to within 1 kcal/mol in the best cases. Quantitative predictions(More)
Protein splicing is a post-translational process in which a biologically inactive protein is activated by the release of a segment denoted as an intein. The process involves four steps. In the third, the scission of the intein takes place after the cyclization of the last amino acid of the segment, an asparagine. Little is known about the chemical reaction(More)