Adrian J. Hobbs

Learn More
Diets rich in fruits and vegetables reduce blood pressure (BP) and the risk of adverse cardiovascular events. However, the mechanisms of this effect have not been elucidated. Certain vegetables possess a high nitrate content, and we hypothesized that this might represent a source of vasoprotective nitric oxide via bioactivation. In healthy volunteers,(More)
Expression of inducible NO synthase (iNOS) by macrophages is a prerequisite for the production of high output NO, which mediates many bactericidal and tumoricidal actions of these immune cells. The expression of iNOS in mammalian cells is governed predominantly by the transcription factor, NF-kappa B, which regulates the expression of many host defense(More)
Nitric oxide (NO) regulates numerous physiological processes, including neurotransmission, smooth muscle contractility, platelet reactivity, and the cytotoxic activity of immune cells. Because of the ubiquitous nature of NO, inappropriate release of this mediator has been linked to the pathogenesis of a number of disease states. This provides the rationale(More)
Ingestion of dietary (inorganic) nitrate elevates circulating and tissue levels of nitrite via bioconversion in the entero-salivary circulation. In addition, nitrite is a potent vasodilator in humans, an effect thought to underlie the blood pressure-lowering effects of dietary nitrate (in the form of beetroot juice) ingestion. Whether inorganic nitrate(More)
Endothelial cells in most vascular beds release a factor that hyperpolarizes the underlying smooth muscle, produces vasodilatation, and plays a fundamental role in the regulation of local blood flow and systemic blood pressure. The identity of this endothelium-derived hyperpolarizing factor (EDHF), which is neither NO nor prostacyclin, remains obscure.(More)
Nitric oxide (NO) production by the vascular endothelium maintains an essential antiinflammatory, cytoprotective influence on the blood vessel wall. A key component of this activity is attributed to prevention of leukocyte-endothelial cell interactions, yet the underlying mechanisms remain unclear. The NO receptor, soluble guanylate cyclase (sGC), is(More)
  • A J Hobbs
  • Trends in pharmacological sciences
  • 1997
Despite widespread distribution in most mammalian cells, the role of soluble guanylate cyclase has, until recently, been poorly defined, especially when compared with its more illustrious sibling, adenylate cyclase. In this review Adrian Hobbs outlines some of the reasons why the soluble guanylate cyclase-cGMP pathway has remained outside the signalling(More)
Nitroxyl (HNO), the 1-electron reduced and protonated congener of nitric oxide (NO), has received recent attention as a potential pharmacological agent for the treatment of heart failure and as a preconditioning agent for the mitigation of ischemia-reperfusion injury. Interest in the pharmacology and biology of HNO has prompted examination, or in some(More)
Aspirin is a unique nonsteroidal anti-inflammatory drug; at high doses (aspirin(high), 1g), it is anti-inflammatory stemming from the inhibition of cyclooxygenase and proinflammatory signaling pathways including NF-kappaB, but is cardioprotective at lower doses (aspirin(low), 75 mg). The latter arises from the inhibition of thromboxane (Tx) B(2), a(More)
PURPOSE In cavernous smooth muscle nitric oxide (NO) activates soluble guanylate cyclase, which catalyzes the synthesis of cyclic guanosine 3',5'-monophosphate, leading to smooth muscle relaxation, increased blood flow and penile erection. The pyrazolopyridine derivative BAY41-2272(More)