Learn More
An algorithm for the calculation of Ca2+ release flux underlying Ca2+ sparks (Blatter, L.A., J. Hüser, and E. Ríos. 1997. Proc. Natl. Acad. Sci. USA. 94:4176-4181) was modified and applied to sparks obtained by confocal microscopy in single frog skeletal muscle fibers, which were voltage clamped in a two-Vaseline gap chamber or permeabilized and immersed in(More)
Ca2+ sparks of membrane-permeabilized rat muscle cells were analyzed to derive properties of their sources. Most events identified in longitudinal confocal line scans looked like sparks, but 23% (1,000 out of 4,300) were followed by long-lasting embers. Some were preceded by embers, and 48 were "lone embers." Average spatial width was approximately 2 microm(More)
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca 2 currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca 2 as exclusive charge carrier were 4.00(More)
Amplitude, spatial width, and rise time of Ca(2+) sparks were compared in frog fast-twitch muscle, in three conditions that alter activation of release channels by [Ca(2+)]. A total of approximately 17,000 sparks from 30 cells were evaluated. In cells under voltage clamp, caffeine (0.5 or 1 mM) increased average spark width by 28%, rise time by 18%, and(More)
The mechanism of transmission in skeletal muscle EC coupling is still an open question. There is some indirect evidence in favour of the mechanical coupling hypothesis, deriving mostly from consideration of the structure of the Ca2+ release channel protein. A new functional approach is proposed, that consists in comparing the properties of the complete(More)
MagFluo-4 fluorescence (Ca2+) transients associated with action potentials were measured in intact muscle fibres, manually dissected from toads (Leptodactylus insularis) or enzymatically dissociated from mice. In toads, the decay phase of the Ca2+ transients is described by a single exponential with a time constant (τ) of about 7 ms. In mice, a double(More)
Cut twitch muscle fibers mounted in a triple Vaseline-gap chamber were used to study the effects of ryanodine on intramembranous charge movement, and in particular on the repriming of charge 1. Charge 1 repriming was measured either under steady-state conditions or by using a pulse protocol designed to study the time course of repriming. This protocol(More)
An algorithm for the calculation of Ca 2 1 release flux underlying Ca 2 1 sparks (Blatter, L.A., J. Hüser, and E. Ríos. 1997. Proc. Natl. Acad. Sci. USA. 94:4176–4181) was modified and applied to sparks obtained by confocal microscopy in single frog skeletal muscle fibers, which were voltage clamped in a two-Vaseline gap chamber or permeabilized and(More)
To signal cell responses, Ca(2+) is released from storage through intracellular Ca(2+) channels. Unlike most plasmalemmal channels, these are clustered in quasi-crystalline arrays, which should endow them with unique properties. Two distinct patterns of local activation of Ca(2+) release were revealed in images of Ca(2+) sparks in permeabilized cells of(More)
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00(More)