Adnan Trakic

Learn More
While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil(More)
Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become(More)
Conventionally, magnetic resonance imaging (MRI) is performed by pulsing gradient coils, which invariably leads to strong acoustic noise, patient safety concerns due to induced currents, and costly power/space requirements. This modeling study investigates a new silent, gradient coil-free MR imaging method, in which a radiofrequency (RF) coil and its(More)
PURPOSE This article aims to present a fast, efficient and accurate multi-layer integral method (MIM) for the evaluation of complex spatiotemporal eddy currents in nonmagnetic and thin volumes of irregular geometries induced by arbitrary arrangements of gradient coils. METHODS The volume of interest is divided into a number of layers, wherein the(More)
MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this(More)
A new 2 T 3-element orthogonal knee coil array based on the three-dimensional orthogonality principle was designed, constructed and used in a series of pilot magnetic resonance imaging (MRI) studies on a standardized phantom, and human and pig knees. The coil elements within this new coil array are positioned orthogonal to one another allowing problematic(More)
This paper presents a biconjugate gradient (BiCG) method that can significantly improve the performance of the quasi-static finite-difference scheme, which has been widely used to model field induction phenomena in voxel phantoms. The proposed BiCG method offers remarkable computational advantages in terms of convergence performance and memory consumption(More)
  • 1