Aditya K. Dharmadhikari

Learn More
Optically trapped single cells of the biflagellated, green alga, Chlamydomonas reinhardtii, rotate. The rotational dynamics of trapped wild-type and mutant cells show that functional flagella play a decisive role: the entire flagellar apparatus (central microtubules, radial spokes, and dynein arms) is involved. Any aberration in this apparatus leads to(More)
All-optical, mirrorless switching and bistability is demonstrated with bacteri-orhodopsin (bR). A low-power, 532 nm laser beam modulates the transmission of a cw laser beam at 635 nm that corresponds to peak absorption of the O-excited state in the bR photocycle. The switch has features like a NOT-gate; its switching contrast depends on the pulse width and(More)
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved '9+2' axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4)(More)
We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting(More)
Optical traps (tweezers) are beginning to be used with increasing efficacy in diverse studies in the biological and biomedical sciences. We report here results of a systematic study aimed at enhancing the efficiency with which dielectric (transparent) materials can be optically trapped. Specifically, we investigate how truncation of the incident laser beam(More)
  • 1