Adina Racoviteanu

Learn More
We present spatial patterns of glacier fluctuations from the Cordillera Blanca, Peru, (glacier area, terminus elevations, median elevations and hypsography) at decadal timescales derived from 1970 aerial photography, 2003 SPOT5 satellite data, Geographic Information Systems (GIS) and statistical analyses. We derived new glacier outlines from the 2003 SPOT(More)
This paper evaluates the suitability of readily available elevation data derived from recent sensors – the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) – for glaciological applications. The study area is Nevado Coropuna (6426 m), situated in Cordillera Ampato of Southern Peru. The(More)
The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as(More)
The Global Land Ice Measurement from Space (GLIMS) project is a cooperative effort of over sixty institutions world-wide with the goal of inventorying a majority of the world's estimated 160000 glaciers. Each institution (called a Regional Center, or RC) oversees the analysis of satellite imagery for a particular region containing glacier ice. Data received(More)
On 16–18 June 2008 the US National Snow and Ice Data Center held a GLIMS workshop in Boulder, CO, USA, focusing on formulating procedures and best practices for operational glacier mapping using satellite imagery. Despite the progress made in recent years, there still remain many cases where automatic delineation of glacier boundaries in satellite imagery(More)
Deriving glacier outlines from satellite data has become increasingly popular in the past decade. In particular when glacier outlines are used as a base for change assessment, it is important to know how accurate they are. Calculating the accuracy correctly is challenging, as appropriate reference data (e.g. from higher-resolution sensors) are seldom(More)
In this study we use visible, short-wave infrared and thermal Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data validated with high-resolution Quickbird (QB) and Worldview2 (WV2) for mapping debris cover in the eastern Himalaya using two independent approaches: (a) a decision tree algorithm, and (b) texture analysis. The decision(More)
  • 1