Learn More
We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes,(More)
We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of(More)
Patterns of deliberate human activity and behavior are of utmost importance in areas as diverse as disease spread, resource allocation, and emergency response. Because of its widespread availability and use, e-mail correspondence provides an attractive proxy for studying human activity. Recently, it was reported that the probability density for the(More)
Small-world and scale-free networks are known to be more easily synchronized than regular lattices, which is usually attributed to the smaller network distance between oscillators. Surprisingly, we find that networks with a homogeneous distribution of connectivity are more synchronizable than heterogeneous ones, even though the average network distance is(More)
A large computer program is typically divided into many hundreds or even thousands of smaller units, whose logical connections define a network in a natural way. This network reflects the internal structure of the program, and defines the "information flow" within the program. We show that (1) due to its growth in time this network displays a scale-free(More)
Many complex networks display strong heterogeneity in the degree (connectivity) distribution. Heterogeneity in the degree distribution often reduces the average distance between nodes but, paradoxically, may suppress synchronization in networks of oscillators coupled symmetrically with uniform coupling strength. Here we offer a solution to this apparent(More)
The control of complex networks is of paramount importance in areas as diverse as ecosystem management, emergency response and cell reprogramming. A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behaviour or fail. Here we show that it is possible to exploit the same(More)
An imperative condition for the functioning of a power-grid network is that its power generators remain synchronized. Disturbances can prompt desynchronization, which is a process that has been involved in large power outages. Here we derive a condition under which the desired synchronous state of a power grid is stable, and use this condition to identify(More)
We consider maximization of the synchronizability of oscillator networks by assigning weights and directions to the links of a given interaction topology. By extending the master stability formalism to all possible network structures, we show that, unless some oscillator is linked to all the others, maximally synchronizable networks are necessarily(More)