Learn More
We study the model of projective simulation (PS), a novel approach to artificial intelligence based on stochastic processing of episodic memory which was recently introduced. 2) Here we provide a detailed analysis of the model and examine its performance, including its achievable efficiency, its learning times and the way both properties scale with the(More)
We study the model of projective simulation (PS) which is a novel approach to artificial intelligence (AI). Recently it was shown that the PS agent performs well in a number of simple task environments, also when compared to standard models of reinforcement learning (RL). In this paper we study the performance of the PS agent further in more complicated(More)
Alexey A. Melnikov, 2 Adi Makmal, Vedran Dunjko, 3 and Hans J. Briegel Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria Laboratory of Evolutionary Genetics, Division of Molecular(More)
We present an approach for fully numerical, all-electron solutions of the optimized effective potential equation within Kohn-Sham density functional theory for diatomic molecules. The approach is based on a real-space, prolate-spheroidal coordinate grid for solving the all-electron Kohn-Sham equations and an iterative scheme for solving the optimized(More)
Learning models of artificial intelligence can nowadays perform very well on a large variety of tasks. However, in practice different task environments are best handled by different learning models, rather than a single, universal, approach. Most non-trivial models thus require the adjustment of several to many learning parameters, which is often done on a(More)
We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct(More)
The electronic structure and magnetic properties of Mn-doped Ge, GaAs, and ZnSe nanocrystals are investigated using real space ab initio pseudopotentials constructed within the local spin-density approximation. The ferromagnetic and half-metallicity trends found in the bulk are preserved in the nanocrystals. However, the Mn-related impurity states become(More)
  • 1