Learn More
Despite recent progress in AI planning, many benchmarks remain challenging for current planners. In many domains, the performance of a planner can greatly be improved by discovering and exploiting information about the domain structure that is not explicitly encoded in the initial PDDL formulation. In this paper we present and compare two automated methods(More)
Heuristic search is a leading approach to domain-independent planning. For cost-optimal planning, however, existing admissible heuristics are generally too weak to effectively guide the search. Pattern database heuristics (PDBs), which are based on abstractions of the search space, are currently one of the most promising approaches to developing better(More)
Multi-agent path planning is a challenging problem with numerous real-life applications. Running a centralized search such as A* in the combined state space of all units is complete and cost-optimal, but scales poorly, as the state space size is exponential in the number of mobile units. Traditional decentralized approaches, such as FAR and WHCA*, are(More)
Large-scale, parallel clusters composed of commodity processors are increasingly available, enabling the use of vast processing capabilities and distributed RAM to solve hard search problems. We investigate parallel algorithms for optimal sequential planning, with an emphasis on exploiting distributed memory computing clusters. In particular, we focus on an(More)
Pathfinding is important in many applications, including games, robotics and GPS itinerary planning. In games, most pathfinding methods rely on runtime search. Despite numerous enhancements introduced in recent years, runtime search has the disadvantage that, in bad cases, most parts of a map need to be explored, causing a time performance degradation. In(More)
Heuristic search has been successful for games like chess and checkers, but seems to be of limited value in games such as Go and shogi, and puzzles such as Sokoban. Other techniques are necessary to approach the performance that humans achieve in these hard domains. This paper explores using planning as an alternative problem-solving framework for Sokoban.(More)
Artificial intelligence (AI) technology can have a dramatic impact on the quality of video games. AI planning techniques are useful in a wide range of game components, including modules that control the behavior of fully autonomous units. However, planning is computationally expensive, and the CPU and memory resources available to game AI modules at runtime(More)