Learn More
The yeast Rgt1 repressor is a bifunctional protein that acts as a transcriptional repressor and activator. Under glucose-limited conditions, Rgt1 induces transcriptional repression by forming a repressive complex with its corepressors Mth1 and Std1. Here, we show that Rgt1 is converted from a transcriptional repressor into an activator under high glucose(More)
Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of(More)
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and(More)
Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction(More)
BACKGROUND The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose(More)
BACKGROUND Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW This review(More)
Glucose uptake, the first, rate-limiting step of its utilization, is facilitated by glucose transporters. Expression of several glucose transporter (HXT) genes in yeast is repressed by the Rgt1 repressor, which recruits the glucose-responsive transcription factor Mth1 and the general corepressor complex Ssn6-Tup1 in the absence of glucose; however, it is(More)
The budding yeast Saccharomyces cerevisiae expresses different isoforms of glucose transporters (HXTs) in response to different levels of glucose. Here, we constructed reporter strains in which the nourseothricin (NAT) resistance gene is expressed under the control of the HXT1, 2, or 3 promoter. The resulting HXT-NAT reporter strains exhibited a strict(More)
The yeast Rgt1 repressor inhibits transcription of the glucose transporter (HXT) genes in the absence of glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA) and dissociates from the HXT promoters, resulting in(More)
The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not(More)