Learn More
This study is focused on improving the classification performance of EEG data through the use of some data restructuring methods. In this study, the impact of having more training instances/samples vs. using shorter window sizes is investigated. The BCI2003 IVa dataset is used to examine the results. The results not surprisingly indicate that, up to a(More)
—EEG signals usually have a high dimensionality which makes it difficult for classifiers to learn the difference of various classes in the underlying pattern in the signal. This paper investigates several evolutionary algorithms used to reduce the dimensionality of the data. The study presents electrode and feature reduction methods based on Genetic(More)
Subject transfer is a growing area of research in EEG aiming to address the lack of having enough EEG samples required for BCI by using samples originating from individuals or groups of subjects that previously performed similar tasks. This paper investigates the feasibility of two frameworks for enhancing subject transfer through a 90%+ reduction of EEG(More)
EEG recording involves having subjects sit on a chair for a couple of hours without being allowed to move and being asked to repeatedly perform various mental, computational, motor imaginary or any other tasks for some specific amount of time. This is a time consuming, boring and complicated procedure during which there is no guarantee that the subject will(More)
It is a common phenomenon that classification techniques applied to human EEG data are often more successful for some subjects than others. One reason may be that subjects differ in the degree and length of time that they can continue to be engaged with the experimental task at hand. EEG recording can be a time-consuming, tedious and challenging procedure(More)
Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly(More)
Electroencephalogram (EEG) based Brain Computer Interface (BCI) is a system that uses human brainwaves recorded from the scalp as a means for providing a new communication channel by which people with limited physical communication capability can effect control over devices such as moving a mouse and typing characters. Evolutionary approaches have the(More)