Learn More
Overeating, frequently linked to an increasing incidence of overweight and obesity, has become epidemic and one of the leading global health problems. To explain the development of this eating behavior, new hypotheses involve the concept that many people might be addicted to food by losing control over their ability to regulate food intake. Among the(More)
Oleoylethanolamide (OEA) is a biologically active lipid amide that is released by small-intestinal enterocytes during the absorption of dietary fat and inhibits feeding by engaging the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Previous studies have shown that the anorexic effects of systemically administered OEA(More)
Observational studies in humans suggest that exposure to marijuana and other cannabis-derived drugs produces a wide range of subjective effects on mood tone and emotionality. These observations have their counterpart in animal studies, showing that cannabinoid agonists strongly affect emotional reactivity in directions that vary depending on dose and(More)
As a consequence of an increasingly aging population, the number of people affected by neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, is rapidly increasing. Although the etiology of these diseases has not been completely defined, common molecular mechanisms including neuroinflammation, excitotoxicity(More)
Chronic exposure to a diet rich in fats changes the gastrointestinal milieu and alters responses to several signals involved in the control of food intake. Oleoylethanolamide (OEA) is a gut-derived satiety signal released from enterocytes upon the ingestion of dietary fats. The anorexigenic effect of OEA, which requires intestinal PPAR-alpha receptors and(More)
Several factors play a role in obesity (i.e., behavior, environment, and genetics) and epigenetic regulation of gene expression has emerged as a potential contributor in the susceptibility and development of obesity. To investigate the individual sensitivity to weight gain/resistance, we here studied gene transcription regulation of several hypothalamic(More)
The spread of "obesity epidemic" and the poor efficacy of many anti-obesity therapies in the long-term highlight the need to develop novel efficacious therapy. This necessity stimulates a large research effort to find novel mechanisms controlling feeding and energy balance. Among these mechanisms a great deal of attention has been attracted by a family of(More)
Deficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimer's disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas.(More)
Regulatory/suppressor T cells (Tregs) maintain immunologic homeostasis and prevent autoimmunity. They are the guardians of dominant tolerance. Recent research reveals quantitative and/or functional defect of Tregs in systemic autoimmune diseases. In this article, past and recent studies of Tregs in human systemic lupus erythematosus (SLE), rheumatoid(More)
By enhancing brain anandamide tone, inhibitors of fatty acid amide hydrolase (FAAH) induce anxiolytic-like effects in rodents and enhance brain serotonergic transmission. Mice lacking the faah gene (FAAH−/−) show higher anandamide levels. However, their emotional phenotype is still debated and their brain serotonergic tone remained unexplored. In this(More)