Learn More
Radiotherapy treatments become more and more accurate, using techniques like IMRT. Their irradiation fields and dose depositions are small and complex, and only a few dosimeters are available for real time and in vivo control for photons as well as for electrons beams. In this context, a new scintillating fiber dosimeter (SFD) has been developed by the(More)
The continual need for more accurate and effective techniques in radiation therapy makes it necessary to devise new control means combining high spatial resolution as well as high dose accuracy. Intensity modulated radio therapy (IMRT) allows highly conformed fields with high spatial gradient and therefore requires a precise monitoring of all the multileaf(More)
Radiotherapy treatments become more and more accurate, using very small irradiation fields and complex dose depositions. So small dosimeters for real time and in vivo dosimetry, suitable for photons as well as for electrons beams are highly desired. In this context, a scintillating fiber dosimeter (SFD) has been developed by the Laboratoire de Physique(More)
New generation of radiation therapy accelerators requires highly accurate dose measurements with high spatial resolution patterns. IMRT is especially demanding since the positioning accuracy of all the multi-leafs should be verified for each applied field and at any incidence. A new 2-D tissue equivalent dosemeter is presented with high spatial resolution(More)
New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to(More)
Radiation therapy accelerators require highly accurate dose deposition and the output must be monitored frequently and regularly. Ionization chambers are the primary tool for this control, but their size, their high voltage needed, and the correction needed for electrons make them unsuitable for use during patient treatment. We have developed a small(More)
  • 1