Learn More
Humans and other animals change their behavior in response to unexpected outcomes. The orbitofrontal cortex (OFC) is implicated in such adaptive responding, based on evidence from reversal tasks. Yet these tasks confound using information about expected outcomes with learning when those expectations are violated. OFC is critical for the former function;(More)
Neuregulin 1 (NRG1) is an important growth factor involved in the development and plasticity of the central nervous system. Since its identification as a susceptibility gene for schizophrenia, several transgenic mouse models have been employed to elucidate the role NRG1 may play in the pathogenesis of psychiatric disease. Unfortunately very few studies have(More)
We monitored single-neuron activity in the orbitofrontal cortex of rats performing a time-discounting task in which the spatial location of the reward predicted whether the delay preceding reward delivery would be short or long. We found that rewards delivered after a short delay elicited a stronger neuronal response than those delivered after a long delay(More)
Directional selectivity during the reward epoch In the main text we focus on the effects of delay length and reward size on reward-related activity, however there was also a significant effect on response direction. This was somewhat surprising because spatial selectivity has rarely been described in OFC; however in past studies response direction was not a(More)
Amygdala D1 receptors have been implicated in the motivating effects of cocaine-conditioned cues and cocaine itself, but the specific nucleus involved is unclear. Thus, we infused the D1 antagonist, SCH-23390, into the rostral basolateral amygdala (rBLA), caudal basolateral amygdala (cBLA), or central amygdala (CEA), and tested its effects on(More)
A hypofunction of the N-methyl-D-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. Compelling evidence of altered NMDA receptor subunit expression in the schizophrenic brain has not, however, so far emerged. Rats reared in isolation exhibit several characteristics, including disturbed sensory gating, which resemble those(More)
The molecular basis of schizophrenia is poorly understood; however, different brain regions are believed to play distinct roles in disease symptomology. We have studied gene expression in the superior temporal cortex (Brodmann area 22; BA22), which may play a role in positive pathophysiology, and compared our results with data from the anterior prefrontal(More)
Exposure to stress can result in an increased risk for psychiatric disorders, especially among genetically predisposed individuals. Neuregulin 1 (NRG1) is a susceptibility gene for schizophrenia and is also associated with psychotic bipolar disorder. In the rat, the neurons of the hypothalamic paraventricular nucleus show strong expression of Nrg1 mRNA. In(More)
We have previously shown that male rats exposed to gestational stress exhibit phenotypes resembling what is observed in schizophrenia, including hypersensitivity to amphetamine, blunted sensory gating, disrupted social behavior, impaired stress axis regulation, and aberrant prefrontal expression of genes involved in synaptic plasticity. Maternal(More)
BACKGROUND The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression. PRINCIPAL FINDINGS In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of(More)