Learn More
Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM). Their high aspect ratio, for example, opens up the possibility of probing the deep crevices that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the(More)
We have implemented a method for multiplexed detection of polymorphic sites and direct determination of haplotypes in 10-kilobase-size DNA fragments using single-walled carbon nanotube (SWNT) atomic force microscopy (AFM) probes. Labeled oligonucleotides are hybridized specifically to complementary target sequences in template DNA, and the positions of the(More)
Capillary array electrophoresis (CAE) microplates that can analyze 96 samples in less than 8 min have been produced by bonding 10-cm-diameter micromachined glass wafers to form a glass sandwich structure. The microplate has 96 sample wells and 48 separation channels with an injection unit that permits the serial analysis of two different samples on each(More)
Atomic force microscopy (AFM) has great potential as a tool for structural biology, a field in which there is increasing demand to characterize larger and more complex biomolecular systems. However, the poorly characterized silicon and silicon nitride probe tips currently employed in AFM limit its biological applications. Carbon nanotubes represent ideal(More)
PURPOSE Melanolipofuscin (MLF) is a complex granule, exhibiting properties of both melanosomes and lipofuscin (LF) granules, which accumulates in retinal pigment epithelial (RPE) cells and may contribute to the etiology of age-related macular degeneration (AMD). MLF accumulation has been reported by Feeney-Burns to more closely reflect the onset of AMD than(More)
Single-walled carbon nanotube ͑SWNT͒ tips have been used to image nanostructures with high resolution. Studies of gold nanocrystal standards showed that SWNT tips provide a significant improvement in lateral resolution with respect to multi-walled nanotube tips and microfabricated Si tips. The nanotube tips were also used to resolve substructure within(More)
DNA-based nanotechnology is a vibrant and expanding field. The specific molecular recognition properties and large aspect ratio of DNA make the molecule a promising template for bottom-up fabrication of nanowires and nanodevices. Fabricating well-defined DNA-templated nanowires requires aligned surface deposition and specific metallization of DNA molecules.(More)
technical advance of this novel technology, there is no doubt that many exciting discoveries will be uncovered in the years to come, and the AFM will soon establish itself as one of the widely applied techniques in biomedical research. We have not yet reached the limit of its potential. I thank Prof. A. V. Somlyo and D. Czajkowsky for a critical reading of(More)
The class of equilibrium gradient methods utilizes the opposition of two forces, at least one of which changes in magnitude with position, to separate and concentrate analytes. The drawback of many methods of this type is that the production of two opposing forces requires in comparison to standard methods, such as capillary electrophoresis, a relatively(More)