Learn More
The Virtual-Reality Peripheral Network (VRPN) system provides a device-independent and network-transparent interface to virtual-reality peripherals. VRPN's application of factoring by function and of layering in the context of devices produces an interface that is novel and powerful. VRPN also integrates a wide range of known advanced techniques into a(More)
Two experiments involving indirect touch were carried out to explore the relationships among perceptual dimensions of haptically examined surfaces. Subjects in both experiments used a stylus to evaluate the properties of virtual surfaces created by a force-feedback device; four surface properties (resistance to normal force, coefficient of friction, texture(More)
We examined, in two experiments, the perceptual scaling of the properties of haptically examined virtual surfaces, and the way in which these properties subjectively combine. Participants used a consistent movement pattern to explore, with a stylus, virtual surfaces generated by a force-feedback device. In experiment 1, four surface properties (bump size,(More)
We present here the outlines of a system for simultaneous presentation of several related data sets to users by means of a multidimensional haptic display. Such a display is preferable to a visual display in some situations, for example when (as in our lab) a nanometer-scale real surface is being both examined and modified by the user, and rapid local(More)
A scanning electron microscope (SEM) simulator was developed based on the models used in the MONSEL software. This simulator extends earlier work by introducing an object-oriented framework and adding optimization methods based on precomputation of electron trajectories. Several optimizations enable speedup by factors of 5-100 on a single processor over(More)
We propose a new method for fitting a model of specimen charging to scanning electron microscope (SEM) images. Charging effects cause errors when one attempts to infer the size or shape of a specimen from an image. The goal of our method is to enable image analysis algorithms for measurement, segmentation, and three-dimensional (3-D) reconstruction that(More)
  • 1