Adam Ostrowski

Learn More
During biofilm formation by Bacillus subtilis, two extracellular matrix components are synthesized, namely, the TasA amyloid fibers and an exopolysaccharide. In addition, a small protein called YuaB has been shown to allow the biofilm to form. The regulatory protein DegU is known to initiate biofilm formation. In this report we show that the main role of(More)
Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted(More)
Protein O-GlcNAcylation is an abundant, dynamic and reversible type of protein post-translational modification in animals that has been implicated in signalling processes linked to innate immunity, stress response, growth factor response, transcription, translation and proteosomal degradation. Only two enzymes, O-GlcNAc (O-linked N-acetylglucosamine)(More)
In the natural environment bacteria predominantly live adhered to a surface as part of a biofilm. While many of the components needed for biofilm assembly are known, the mechanism by which microbes sense and respond to contact with a surface is poorly understood. Bacillus subtilis is a Gram-positive model for biofilm formation. The DegS-DegU two-component(More)
Unicellular organisms naturally form multicellular communities, differentiate into specialized cells, and synchronize their behaviour under certain conditions. Swarming, defined as a movement of a large mass of bacteria on solid surfaces, is recognized as a preliminary step in the formation of biofilms. The main aim of this work was to study the role of a(More)
The assembly of the bacterial flagellum is exquisitely controlled. Flagellar biosynthesis is underpinned by a specialized type III secretion system that allows export of proteins from the cytoplasm to the nascent structure. Bacillus subtilis regulates flagellar assembly using both conserved and species-specific mechanisms. Here, we show that YvyG is(More)
Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is(More)
BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous(More)
Adam Ostrowski, Mehmet Gundogdu, Andrew T. Ferenbach, Andrey A. Lebedev, and X Daan M. F. van Aalten From the Division of Molecular Microbiology and Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, United Kingdom and Science Technology Facilities(More)
  • 1