Adam M. Takos

Learn More
Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of flowers and fruits. In apples (Malus domestica Borkh.), several steps of the anthocyanin pathway are coordinately regulated, suggesting control by common transcription factors. A gene encoding an R2R3 MYB transcription factor was isolated from apple (cv Cripps'(More)
Proanthocyanidins (PAs; or condensed tannins) can protect plants against herbivores, contribute to the taste of many fruits, and act as dietary antioxidants beneficial for human health. We have previously shown that in grapevine (Vitis vinifera) PA synthesis involves both leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR). Here we report(More)
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450(More)
A complex of R2R3-MYB and bHLH transcription factors, stabilized by WD40 repeat proteins, regulates gene transcription for plant cell pigmentation and epidermal cell morphology. It is the MYB component of this complex which specifies promoter target activation. The Arabidopsis MYB TT2 regulates proanthocyanidin (PA) biosynthesis by activating the expression(More)
Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid-derived cyanogenic glucosides (alpha-hydroxynitrile glucosides) by specific beta-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used(More)
In comparison with the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study, we demonstrate that desorption electrospray ionization mass(More)
Recent studies have demonstrated the existence of glycosyl-phosphatidylinositol (GPI)-anchored proteins in higher plants. In this study we tested whether GPI-addition signals from diverse evolutionary sources would function to link a GPI-anchor to a reporter protein in plant cells. Tobacco protoplasts were transiently transfected with a truncated form of(More)
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and β-hydroxynitrile glucosides rhodiocyanoside(More)
In plants, the genomic clustering of non-homologous genes for the biosynthesis of chemical defense compounds is an emerging theme. Gene clustering is also observed for polymorphic sexual traits under balancing selection, and examples in plants are self-incompatibility and floral dimorphy. The chemical defense pathways organized as gene clusters are(More)
Glycosyl-phosphatidylinositol (GPI)-anchored plasma membrane proteins have been found to be widespread in eukaryotes and protozoa but have not been reported in higher terrestrial plants. A sensitive biotin-based assay has been used to detect the presence of GPI-anchored proteins on the outer surface of cultured Nicotiana tabacum cells. Six proteins with(More)