Adam M. Fudickar

Learn More
Reproductive allochrony presents a potential barrier to gene flow and is common in seasonally sympatric migratory and sedentary birds. Mechanisms mediating reproductive allochrony can influence population divergence and the capacity of populations to respond to environmental change. We asked whether reproductive allochrony in seasonally sympatric birds(More)
Understanding how populations adapt to constantly changing environments requires approaches drawn from integrative and evolutionary biology as well as population ecology. Timing of reproduction and migration reflect seasonal pulses in resources, are driven by day length, and are also responsive to environmental cues that change with climate. Researchers(More)
Variations in the geometry of the external flight apparatus of birds are beneficial for different behaviors. Long-distance flight is less costly with more pointed wings and shorter tails; however these traits decrease maneuverability at low speeds. Selection has led to interspecific differences in these and other flight apparatuses in relation to migration(More)
To optimally time reproduction, animals must coordinate changes in the hypothalamo-pituitary-gonadal (HPG) axis. The extent of intra-species variation in seasonal timing of reproductive function is considerable, both within and among populations. Dark-eyed junco (Junco hyemalis) populations are known to differ in their reproductive timing response to cues(More)
Every year, billions of wild diurnal songbirds migrate at night. To do so, they shift their daily rhythm from diurnality to nocturnality. In captivity this is observed as a gradual transition of daytime activity developing into nocturnal activity, but how wild birds prepare their daily rhythms for migration remains largely unknown. Using an automated(More)
  • 1