Adam L Hughes

Learn More
Cholesterol and fatty acid synthesis in mammals are controlled by SREBPs, a family of membrane bound transcription factors. Our studies identified homologs of SREBP, its binding partner SCAP, and the ER retention protein Insig in Schizosaccharomyces pombe, named sre1+, scp1+, and ins1+. Like SREBP, Sre1 is cleaved and activated in response to sterol(More)
Cytochrome P450 enzymes are heme-dependent monoxygenases that play a central role in human physiology. Despite the numerous physiological processes that P450 enzymes impact, the electron donors P450 oxidoreductase and cytochrome b5 are the only proteins known to interact with and modulate the activity of ER microsomal P450s. Here, we report that Dap1/PGRMC1(More)
Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory(More)
Mitochondria have a central role in ageing. They are considered to be both a target of the ageing process and a contributor to it. Alterations in mitochondrial structure and function are evident during ageing in most eukaryotes, but how this occurs is poorly understood. Here we identify a functional link between the lysosome-like vacuole and mitochondria in(More)
Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in(More)
We investigated the effects of the hypoxia-mimetic CoCl2 in the pathogenic fungus Cryptococcus neoformans and demonstrated that CoCl2 leads to defects in several enzymatic steps in ergosterol biosynthesis. Sterol defects were amplified in cells lacking components of the Sre1p-mediated oxygen-sensing pathway. Consequently, Sre1p and its binding partner Scp1p(More)
Replicative aging in yeast is asymmetric-mother cells age but their daughter cells are rejuvenated. Here we identify an asymmetry in pH between mother and daughter cells that underlies aging and rejuvenation. Cytosolic pH increases in aging mother cells, but is more acidic in daughter cells. This is due to the asymmetric distribution of the major regulator(More)
In fission yeast, orthologs of mammalian SREBP and Scap, called Sre1 and Scp1, monitor oxygen-dependent sterol synthesis as a measure of cellular oxygen supply. Under low oxygen conditions, sterol synthesis is inhibited, and Sre1 cleavage is activated. However, the sterol signal for Sre1 activation is unknown. In this study, we characterized the sterol(More)
Insig functions as a central regulator of cellular cholesterol homeostasis by controlling activity of HMG-CoA reductase (HMGR) in cholesterol synthesis. Insig both accelerates the degradation of HMGR and suppresses HMGR transcription through the SREBP-Scap pathway. The fission yeast Schizosaccharomyces pombe encodes homologs of Insig, HMGR, SREBP, and Scap,(More)
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data(More)