Adam L Fisher

Learn More
Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the(More)
Eucaryotic ribonucleotide reductases (RR) catalyze the reduction of ribonucleoside diphosphates to 2'-deoxyribonucleoside diphosphates. Each has an R1(2)R2(2) quaternary structure with each subunit playing a critical role in catalysis. Separation of the subunits results in loss of activity. Previous studies have demonstrated that peptides corresponding to(More)
An acoustofluidic device has been developed for concentrating vegetative bacteria in a continuous-flow format. We show that it is possible to overcome the disruptive effects of acoustic streaming which typically dominate for small target particles, and demonstrate flow rates compatible with the testing of drinking water. The device consists of a(More)
Mammalian ribonucleotide reductase (mRR), a potential target for cancer intervention, is composed of two subunits, mR1 and mR2, whose association is critical for enzyme activity. In this article we describe the structural features of the mRR-inhibitor Ac-F-c[ELAK]-DF (Peptide 3) while bound to the mR1 subunit as determined by transferred NOEs. Peptide 3 is(More)
Development of synthetic surfaces that are highly reproducible and biocompatible for in vitro cell culture offers potential for development of improved models for studies of cellular physiology and pathology. They may also be useful in tissue engineering by removal of the need for biologically-derived components such as extracellular matrix proteins. We(More)
  • 1