Adam J Tanner

Learn More
Interleukin-2 tyrosine kinase, Itk, is an important member of the Tec family of non-receptor tyrosine kinases that play a central role in signaling through antigen receptors such as the T-cell receptor, B-cell receptor, and Fcepsilon. Selective inhibition of Itk may be an important way of modulating many diseases involving heightened or inappropriate(More)
Interleukin-2 inducible T-cell kinase (Itk) plays a role in T-cell functions, and its inhibition potentially represents an attractive intervention point to treat autoimmune and allergic diseases. Herein we describe the discovery of a series of potent and selective novel inhibitors of Itk. These inhibitors were identified by structure-based design, starting(More)
Bloom's syndrome is an autosomal recessive genome-instability disorder associated with a predisposition to cancer, premature aging and developmental abnormalities. It is caused by mutations that inactivate the DNA helicase activity of the BLM protein or nullify protein expression. The BLM helicase has been implicated in the alternative lengthening of(More)
The identification of a novel series of PKCθ inhibitors and subsequent optimization using docking based on a crystal structure of PKCθ is described. SAR was rapidly generated around an amino pyridine-ketone hit; (6-aminopyridin-2-yl)(2-aminopyridin-3-yl)methanone 2 leading to compound 21 which significantly inhibits production of IL-2 in a mouse SEB-IL2(More)
Rabbits were immunized with a synthetic phosphopeptide corresponding to a major autophosphorylation site of p185neu/erbB2 to determine the feasibility of producing tyrosine-phosphopeptide-specific antibodies. A series of adsorption and affinity chromatography steps were used to select antibodies with the desired reactivity. Immunoblot experiments showed(More)
Protein kinase C θ (PKCθ) has a central role in T cell activation and survival; however, the dependency of T cell responses to the inhibition of this enzyme appears to be dictated by the nature of the antigen and by the inflammatory environment. Studies in PKCθ-deficient mice have demonstrated that while antiviral responses are PKCθ-independent, T cell(More)
  • 1