Adam J. Hockenberry

Learn More
N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that(More)
NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the(More)
NMDA receptors are essential for neurotransmission and key mediators of synaptic signaling, but they can also trigger deleterious degenerative processes that lead to cell death. Growing evidence suggests that selective blockade of the heterogeneous subunits that comprise the NMDA receptor may enable better control of pharmacotherapies for treating(More)
Although the mapping of codon to amino acid is conserved across nearly all species, the frequency at which synonymous codons are used varies both between organisms and between genes from the same organism. This variation affects diverse cellular processes including protein expression, regulation, and folding. Here, we mathematically model an additional(More)
Inspired by advances in the ability to construct programmable circuits in living organisms, in vitro circuits are emerging as a viable platform for designing, understanding, and exploiting dynamic biochemical circuitry. In vitro systems allow researchers to directly access and manipulate biomolecular parts without the unwieldy complexity and intertwined(More)
Efficient and accurate protein synthesis is crucial for organismal survival in competitive environments. Translation efficiency-the number of proteins translated from a single mRNA in a given time period-is the combined result of differential translation initiation, elongation, and termination rates. Previous research identified the Shine-Dalgarno (SD)(More)
Studies dating back to the 1970s established that sequence complementarity between the anti-Shine-Dalgarno (aSD) sequence on prokaryotic ribosomes and the 5' untranslated region of mRNAs helps to facilitate translation initiation. The optimal location of aSD sequence binding relative to the start codon, the full extents of the aSD sequence and the(More)
The existence of over- and under-represented sequence motifs in genomes provides evidence of selective evolutionary pressures on biological mechanisms such as transcription, translation, ligand-substrate binding, and host immunity. In order to accurately identify motifs and other genome-scale patterns of interest, it is essential to be able to generate(More)
Interdepartmental Program in Biological Sciences, Northwestern University, Evanston, IL, 60208, USA Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, 60208, USA Kellogg School of Management, Northwestern University, Evanston,(More)
1 The Shine-Dalgarno (SD) sequence is often found upstream of protein coding genes 2 across the bacterial kingdom, where it enhances start codon recognition via hybridiza3 tion to the anti-SD (aSD) sequence on the small ribosomal subunit. Despite widespread 4 conservation of the aSD sequence, the proportion of SD-led genes within a genome 5 varies widely(More)
  • 1