Adam Idzik

Learn More
In this paper, we first establish a coincidence theorem under the noncompact settings. Then we derive some fixed point theorems for a family of functions. We apply our fixed point theorem to study nonempty intersection problems for sets with convex sections and obtain a social equilibrium existence theorem. We also introduce a concept of a quasi-variational(More)
We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a(More)
A solid combinatorial theory is presented. The generalized Sperner lemma for chains is derived from the combinatorial Stokes formula. Many other generalizations follow from applications of an n-index of a labelling defined on chains with values in primoids. Primoids appear as the most general structure for which Sperner type theorems can be formulated.(More)
We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems(More)