Learn More
SUMMARY FlexServ is a web-based tool for the analysis of protein flexibility. The server incorporates powerful protocols for the coarse-grained determination of protein dynamics using different versions of Normal Mode Analysis (NMA), Brownian dynamics (BD) and Discrete Dynamics (DMD). It can also analyze user provided trajectories. The server allows a(More)
More than 1700 trajectories of proteins representative of monomeric soluble structures in the protein data bank (PDB) have been obtained by means of state-of-the-art atomistic molecular dynamics simulations in near-physiological conditions. The trajectories and analyses are stored in a large data warehouse, which can be queried for dynamic information on(More)
SUMMARY MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber,(More)
We present NAFlex, a new web tool to study the flexibility of nucleic acids, either isolated or bound to other molecules. The server allows the user to incorporate structures from protein data banks, completing gaps and removing structural inconsistencies. It is also possible to define canonical (average or sequence-adapted) nucleic acid structures using a(More)
We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available(More)
MOTIVATION A new algorithm to trace conformational transitions in proteins is presented. The method uses discrete molecular dynamics as engine to sample protein conformational space. A multiple minima Go-like potential energy function is used in combination with several enhancing sampling strategies, such as metadynamics, Maxwell Demon molecular dynamics(More)
Molecular dynamics simulation (MD) is, just behind genomics, the bioinformatics tool that generates the largest amounts of data, and that is using the largest amount of CPU time in supercomputing centres. MD trajectories are obtained after months of calculations, analysed in situ, and in practice forgotten. Several projects to generate stable trajectory(More)
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell(More)
BACKGROUND The study of the functional role of alternative splice isoforms of a gene is a very active area of research in biology. The difficulty of the experimental approach (in particular, in its high-throughput version) leaves ample room for the development of bioinformatics tools that can provide a useful first picture of the problem. Among the possible(More)
A fast method for the calculation of residue contributions to protein solvation is presented. The approach uses the exposed polar and apolar surface of protein residues and has been parametrized from the fractional contributions to solvation determined from linear response theory coupled to molecular dynamics simulations. Application of the method to a(More)