Learn More
The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique has the potential to be a powerful tool for design space exploration, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination algorithm (SAIL), introduced here, integrates approximative(More)
An evolutionary algorithm is presented to solve the optimal control problem for energy optimal driving. Results show that the algorithm computes equivalent strategies as traditional graph searching approaches like dynamic programming or A*. The algorithm proves to be time efficient while saving multiple orders of magnitude in memory compared to graph(More)
An evolved neural network controller is presented to solve the optimal control problem for energy optimal driving. A controller is produced which computes equivalent control commands to traditional graph searching approaches, while able to adapt to varied constraints and conditions. Furthermore, after training, trivial amounts of computation time and memory(More)
The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique to 'illuminate' the problem space through the lens of chosen features has the potential to be a powerful tool for exploring design spaces, but is limited by the need for numerous evaluations. The Surrogate-Assisted(More)
A novel approach to produce 2D designs by adapting the HyperNEAT algorithm to evolve non-uniform rational basis splines (NURBS) is presented. This representation is proposed as an alternative to previous pixel-based approaches primarily motivated by aesthetic interests, and not designed for optimization tasks. This spline representation outperforms previous(More)
  • 1