Learn More
While vector quantization (VQ) has been applied widely to generate features for visual recognition problems, much recent work has focused on more powerful methods. In particular , sparse coding has emerged as a strong alternative to traditional VQ approaches and has been shown to achieve consistently higher performance on benchmark datasets. Both approaches(More)
A great deal of research has focused on algorithms for learning features from unla-beled data. Indeed, much progress has been made on benchmark datasets like NORB and CIFAR by employing increasingly complex unsupervised learning algorithms and deep models. In this paper, however, we show that several simple factors, such as the number of hidden nodes in the(More)
Scaling up deep learning algorithms has been shown to lead to increased performance in benchmark tasks and to enable discovery of complex high-level features. Recent efforts to train extremely large networks (with over 1 billion parameters) have relied on cloud-like computing infrastructure and thousands of CPU cores. In this paper, we present technical(More)
Full end-to-end text recognition in natural images is a challenging problem that has received much attention recently. Traditional systems in this area have relied on elaborate models incorporating carefully hand-engineered features or large amounts of prior knowledge. In this paper, we take a different route and combine the representational power of large,(More)
The predominant methodology in training deep learning advocates the use of stochastic gradient descent methods (SGDs). Despite its ease of implementation, SGDs are difficult to tune and parallelize. These problems make it challenging to develop, debug and scale up deep learning algorithms with SGDs. In this paper, we show that more sophisticated(More)
Autonomous helicopter flight is widely regarded to be a highly challenging control problem. Despite this fact, human experts can reliably fly helicopters through a wide range of maneuvers, including aerobatic maneuvers at the edge of the helicopter's capabilities. We present apprenticeship learning algorithms, which leverage expert demonstrations to(More)
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need(More)
Many algorithms are available to learn deep hierarchies of features from unlabeled data, especially images. In many cases, these algorithms involve multi-layered networks of features (e.g., neural networks) that are sometimes tricky to train and tune and are difficult to scale up to many machines effectively. Recently, it has been found that K-means(More)
Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning(More)