Learn More
Detecting and reading text from natural images is a hard computer vision task that is central to a variety of emerging applications. Related problems like document character recognition have been widely studied by computer vision and machine learning researchers and are virtually solved for practical applications like reading handwritten digits. Reliably(More)
A great deal of research has focused on algorithms for learning features from unlabeled data. Indeed, much progress has been made on benchmark datasets like NORB and CIFAR by employing increasingly complex unsupervised learning algorithms and deep models. In this paper, however, we show that several simple factors, such as the number of hidden nodes in the(More)
While vector quantization (VQ) has been applied widely to generate features for visual recognition problems, much recent work has focused on more powerful methods. In particular, sparse coding has emerged as a strong alternative to traditional VQ approaches and has been shown to achieve consistently higher performance on benchmark datasets. Both approaches(More)
Full end-to-end text recognition in natural images is a challenging problem that has received much attention recently. Traditional systems in this area have relied on elaborate models incorporating carefully handengineered features or large amounts of prior knowledge. In this paper, we take a different route and combine the representational power of large,(More)
We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech–two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different(More)
Autonomous helicopter flight is widely regarded to be a highly challenging control problem. This paper presents the first successful autonomous completion on a real RC helicopter of the following four aerobatic maneuvers: forward flip and sideways roll at low speed, tail-in funnel, and nose-in funnel. Our experimental results significantly extend the state(More)
Many algorithms are available to learn deep hierarchies of features from unlabeled data, especially images. In many cases, these algorithms involve multi-layered networks of features (e.g., neural networks) that are sometimes tricky to train and tune and are difficult to scale up to many machines effectively. Recently, it has been found that K-means(More)
The predominant methodology in training deep learning advocates the use of stochastic gradient descent methods (SGDs). Despite its ease of implementation, SGDs are difficult to tune and parallelize. These problems make it challenging to develop, debug and scale up deep learning algorithms with SGDs. In this paper, we show that more sophisticated(More)
Scaling up deep learning algorithms has been shown to lead to increased performance in benchmark tasks and to enable discovery of complex high-level features. Recent efforts to train extremely large networks (with over 1 billion parameters) have relied on cloudlike computing infrastructure and thousands of CPU cores. In this paper, we present technical(More)
We present a state-of-the-art speech recognition system developed using end-toend deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need(More)