Learn More
Evidence has amassed from both animal intracranial recordings and human electrophysiology that neural oscillatory mechanisms play a critical role in a number of cognitive functions such as learning, memory, feature binding and sensory gating. The wide availability of high-density electrical and magnetic recordings (64-256 channels) over the past two decades(More)
Retinotopically specific increases in alpha-band ( approximately 10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of(More)
The present study investigated the feasibility of acquiring high-density event-related brain potential (ERP) recordings during treadmill walking in human subjects. The work builds upon recent studies testing the applicability of real-world tasks while obtaining electroencephalographic (EEG) recordings. Participants performed a response inhibition GO/NOGO(More)
The simultaneous presentation of a stimulus in one sensory modality often enhances target detection in another sensory modality, but the neural mechanisms that govern these effects are still under investigation. Here, we test a hypothesis proposed in the neurophysiological literature: that auditory facilitation of visual-target detection operates through(More)
To reveal the fundamental processes underlying the different stages of visual object perception, most studies have manipulated relatively complex images, such as photographs, line drawings of natural objects, or perceptual illusions. Here, rather than starting from complex images and working backward to infer simpler processes, we investigated how the(More)
Humans have limited cognitive resources to process the nearly limitless information available in the environment. Endogenous, or 'top-down', selective attention to basic visual features such as color or motion is a common strategy for biasing resources in favor of the most relevant information sources in a given context. Opposing this top-down separation of(More)
Evidence indicates that when one feature of an object is specifically attended, other task-irrelevant features of that object also receive enhanced processing, presumably as a result of automatic binding processes. On the other hand, evidence also shows that attention can be selectively biased in favor of processing one feature at the expense of processing(More)
Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but(More)
Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other). This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may(More)
  • 1