Learn More
Evidence has amassed from both animal intracranial recordings and human electrophysiology that neural oscillatory mechanisms play a critical role in a number of cognitive functions such as learning, memory, feature binding and sensory gating. The wide availability of high-density electrical and magnetic recordings (64-256 channels) over the past two decades(More)
The neural processing of biological motion (BM) is of profound experimental interest since it is often through the movement of another that we interpret their immediate intentions. Neuroimaging points to a specialized cortical network for processing biological motion. Here, high-density electrical mapping and source-analysis techniques were employed to(More)
Retinotopically specific increases in alpha-band ( approximately 10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of(More)
Oscillatory alpha-band activity (8-15 Hz) over parieto-occipital cortex in humans plays an important role in suppression of processing for inputs at to-be-ignored regions of space, with increased alpha-band power observed over cortex contralateral to locations expected to contain distractors. It is unclear whether similar processes operate during deployment(More)
The simultaneous presentation of a stimulus in one sensory modality often enhances target detection in another sensory modality, but the neural mechanisms that govern these effects are still under investigation. Here, we test a hypothesis proposed in the neurophysiological literature: that auditory facilitation of visual-target detection operates through(More)
The present study investigated the feasibility of acquiring high-density event-related brain potential (ERP) recordings during treadmill walking in human subjects. The work builds upon recent studies testing the applicability of real-world tasks while obtaining electroencephalographic (EEG) recordings. Participants performed a response inhibition GO/NOGO(More)
Functional networks are comprised of neuronal ensembles bound through synchronization across multiple intrinsic oscillatory frequencies. Various coupled interactions between brain oscillators have been described (e.g., phase-amplitude coupling), but with little evidence that these interactions actually influence perceptual sensitivity. Here,(More)
The N1 component of the auditory evoked potential (AEP) is a robust and easily recorded metric of auditory sensory-perceptual processing. In patients with schizophrenia, a diminution in the amplitude of this component is a near-ubiquitous finding. A pair of recent studies has also shown this N1 deficit in first-degree relatives of schizophrenia probands,(More)
The visual system can automatically interpolate or "fill-in" the boundaries of objects when inputs are fragmented or incomplete. A canonical class of visual stimuli known as illusory-contour (IC) stimuli has been extensively used to study this contour interpolation process. Visual evoked potential (VEP) studies have identified a neural signature of these(More)
The trial-to-trial response variability of nearby cortical neurons is correlated. These correlations may strongly influence population coding performance. Numerous studies have shown that correlations can be dynamically modified by attention, adaptation, learning, and potent stimulus drive. However, the mechanisms that influence correlation strength remain(More)