Learn More
Receptor tyrosine kinase (RTK) signalling through extracellular-signal-regulated kinases (ERKs) has pivotal roles during metazoan development, underlying processes as diverse as fate determination, differentiation, proliferation, survival, migration and growth. Abnormal RTK/ERK signalling has been extensively documented to contribute to developmental(More)
To evaluate the specificity of long dsRNAs used in high-throughput RNA interference (RNAi) screens performed at the Drosophila RNAi Screening Center (DRSC), we performed a global analysis of their activity in 30 genome-wide screens completed at our facility. Notably, our analysis predicts that dsRNAs containing > or = 19-nucleotide perfect matches(More)
Pax6 is a pivotal regulator of eye development throughout Metazoa, but the direct upstream regulators of vertebrate Pax6 expression are unknown. In vertebrates, Pax6 is required for formation of the lens placode, an ectodermal thickening that precedes lens development. Here we show that the Meis1 and Meis2 homeoproteins are direct regulators of Pax6(More)
In contrast to animal-based mutant phenotype assays, recent biochemical and quantitative genetic studies have identified hundreds of potential regulators of known signaling pathways. We discuss the discrepancy between previous models and new data, put forward a different signaling conceptual framework incorporating time-dependent quantitative contributions,(More)
A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of(More)
Citation Bergwitz, Clemens et al. " Genetic Determinants of Phosphate Response in Drosophila. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life(More)
Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model(More)
  • 1