Learn More
The elimination of mitotic kinase activity at the end of mitosis is essential for progression to the next stage of the eukaryotic cell cycle. In budding yeast, this process is controlled by a regulatory cascade called the mitotic exit network. Extensive genetic data indicate that mitotic exit network activity is determined by a GTP-binding protein, Tem1,(More)
The Cdc5 protein of budding yeast is a polo-like kinase that has multiple roles in mitosis including control of the mitotic exit network (MEN). MEN activity brings about loss of mitotic kinase activity so that the mitotic spindle is disassembled and cytokinesis can proceed. Activity of the MEN is regulated by a small GTPase, Tem1, which in turn is(More)
The nar1 gene was cloned from Ustilago maydis and the 908-amino-acid (aa) sequence of the encoded protein found to have strong identities with other nitrate reductases from fungi and plants. This was especially so in three domains which define enzyme cofactor-binding sites. The gene was isolated alone and in association with the nir1 gene, suggesting that(More)
Nuclear export of the transcription factor Swi6 during the budding yeast Saccharomyces cerevisiae cell cycle is known to require phosphorylation of the Swi6 serine 160 residue. We show that Clb6/Cdc28 kinase is required for this nuclear export. Furthermore, Cdc28 combined with the S-phase cyclin Clb6 specifically phosphorylates serine 160 of Swi6 in vitro.(More)
Salmonella enterica serovar Typhimurium (S. Typhimurium) replicates inside mammalian cells within membrane-bound compartments called Salmonella-containing vacuoles. Intracellular replication is dependent on the activities of several effector proteins translocated across the vacuolar membrane by the Salmonella pathogenicity island 2 (SPI-2)-type III(More)
In mammals, there are seven classes of beta-tubulin genes, one of which, class III, is neuron specific. Using class-specific monoclonal antibodies, class III beta-tubulin protein could not be detected in frog embryos or in adults with either Western blotting or immunohistochemical techniques. In contrast, the class II beta-tubulin protein, which is(More)
The pyr3 gene of Ustilago maydis encodes a 391-amino acid (aa) polypeptide. The sequence has identifies with dihydro-orotases (DHOases) from other organisms, but is most related to sequences of other monofunctional enzymes. The polypeptide contains the three domains conserved in other DHOases. The polypeptide encoded by the pyr3-1 allele has an aa change(More)
A method is described to detect DNA polymerases and nucleases in homogeneous or crude enzyme preparations after electrophoresis in SDS-polyacrylamide gels(2) containing the appropriate template or substrate. DNA polymerases are electrophoresed in a gel containing gapped calf thymus DNA and after a renaturation treatment, the gel is incubated in a reaction(More)
The REC1 gene of U. maydis has an important but ill-defined role in DNA recombination and repair. We have examined its role in plasmid-chromosome recombination. Plasmid DNA was linearised at various locations with respect to the cloned U. maydis PYR3 gene and introduced into cells by transformation. Chromosomal integration and repair by an homologous(More)