Ad M. J. Ragas

Learn More
Toxicity potentials are standard values used in life cycle assessment (LCA) to enable a comparison of toxic impacts between substances. In most cases, toxicity potentials are calculated with multi-media fate models. Until now, unrealistic system settings were used for these calculations. The present paper outlines an improved model to calculate toxicity(More)
Chemical fate, effect, and damage should be accounted for in the analysis of human health impacts by toxic chemicals in life-cycle assessment (LCA). The goal of this article is to present a new method to derive human damage and effect factors of toxic pollutants, starting from a lognormal dose-response function. Human damage factors are expressed as(More)
Nanoparticles of TiO2, ZrO2, AL2O3, CeO2, fullerene (C60), single-walled carbon nanotubes, and polymethylmethacrylate were tested for ecotoxic effects using one or more ecotoxicity endpoints: Microtox (bacteria), pulse-amplitude modulation (algae), Chydotox (crustaceans), and Biolog (soil enzymes). No appreciable effects were observed at nominal(More)
The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter(More)
The presence of human and veterinary pharmaceuticals in the environment has caused increasing concern due their effects on ecological receptors. Improving the risk assessment of these compounds necessitates a quantitative understanding of their metabolism and elimination in the target organism (toxicokinetics), particularly via the ubiquitous cytochrome(More)
Toxicity potentials are standard values used in life cycle assessment (LCA) to enable a comparison of toxic impacts between substances. This paper presents the results of an uncertainty assessment of toxicity potentials that were calculated with the global nested multi-media fate, exposure and effects model USES-LCA. The variance in toxicity potentials(More)
We performed a cumulative risk assessment for people living in a hypothetical urban environment, called Urbania. The main aims of the study were to demonstrate how a cumulative risk assessment for a middle-sized European city can be performed and to identify the bottlenecks in terms of data availability and knowledge gaps. The assessment focused on five air(More)
The NORMTOX model predicts the lifetime-averaged exposure to contaminants through multiple environmental media, that is, food, air, soil, drinking and surface water. The model was developed to test the coherence of Dutch environmental quality objectives (EQOs). A set of EQOs is called coherent if simultaneous exposure to different environmental media that(More)
To analyze the influence of environmental heterogeneity on heavy metal exposure concentrations for terrestrial vertebrates in river floodplains, a spatially explicit exposure model has been constructed (SpaCE-model: Spatially explicit cumulative exposure model). This model simulates the environmental use of individual organisms by selecting model cells to(More)