Achuth Nair

  • Citations Per Year
Learn More
Shear-wave imaging optical coherence elastography (SWI-OCE) is an emerging method for 3D quantitative assessment of tissue local mechanical properties based on imaging and analysis of elastic wave propagation. Current methods for SWI-OCE involve multiple temporal optical coherence tomography scans (M-mode) at different spatial locations across tissue(More)
We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper(More)
The mechanical properties of tissues can provide valuable information about tissue integrity and health and can assist in detecting and monitoring the progression of diseases such as keratoconus. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess localized mechanical contrast in tissues with micrometer spatial resolution.(More)
In this work we utilize optical coherence elastography (OCE) to assess the effects of UV-A/riboflavin corneal collagen crosslinking (CXL) on the mechanical anisotropy of in situ porcine corneas at various intraocular pressures (IOP). There was a distinct meridian of increased Young's modulus in all samples, and the mechanical anisotropy increased as a(More)
Optical coherence elastography (OCE) is an emerging technique for quantifying tissue biomechanical properties. Generally, OCE relies on point-by-point scanning. However, long acquisition times make point-by-point scanning unfeasible for clinical use. Here we demonstrate a noncontact single shot line-field low coherence holography system utilizing an(More)
Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and(More)
This study demonstrates the feasibility of using the Rayleigh wave model (RWM) in combination with optical coherence elastography (OCE) technique to assess the viscoelasticity of soft tissues. Dispersion curves calculated from the spectral decomposition of OCE-measured air-pulse induced elastic waves were used to quantify the viscoelasticity of samples(More)
  • 1