Learn More
The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than(More)
Connexins are subunits of gap junction channels, which mediate the direct transfer of ions, second messenger molecules and other metabolites between contacting cells. Gap junctions are thought to be involved in tissue homeostasis, embryonic development and the control of cell proliferation [1,2]. It has also been suggested that the loss of intercellular(More)
Prognosis for patients suffering from malignant glioma has not substantially improved. Specific immunotherapy as a novel treatment concept critically depends on target antigens, which are highly overexpressed in the majority of gliomas, but the number of such antigens is still very limited. SOX2 was identified by screening an expression database for(More)
BACKGROUND/AIMS It has previously been shown in rat liver that the gap junctional proteins connexin32 and connexin26 are downregulated when murine hepatocytes are in the S-phase of the cell cycle. Therefore, it has been hypothesized that loss of functional gap junctions could affect proliferation of hepatocytes. This study aimed to check this hypothesis. (More)
OBJECTIVE Nuclear factor of activated T cells (NFAT) transcription factors belong to a family of five proteins that are primarily known for their central role in the regulation of inducible gene expression in activated T cells. Little information exists on the expression or function of NFAT family members in hematopoietic cells, during myeloid(More)
Mice that harbor a targeted homozygous defect in the gene coding for the gap junctional protein connexin26 died in utero during the transient phase from early to midgestation. From day 10 post coitum onwards, development of homozygous embryos was retarded, which led to death around day 11 post coitum. Except for growth retardation, no gross morphological(More)
BACKGROUND Emerging evidence supports a role for glutamate in the biology of cancer. We studied the impact of glutamate receptor subunit silencing on cancer phenotype. MATERIALS AND METHODS Different fragments of the coding region for ionotropic glutamate receptor AMPA 4 (GLUR4), ionotropic glutamate receptor N-methyl D-aspartate 1 (NR1), ionotropic(More)
Malignant glioma represents the most common primary adult brain tumor in Western industrialized countries. Despite aggressive treatment modalities, the median survival duration for patients with glioblastoma multiforme (GBM), the highest grade malignant glioma, has not improved significantly over past decades. One promising approach to deal with GBM is the(More)
BACKGROUND SOX2, a high mobility group (HMG)-box containing transcription factor, is a key regulator during development of the nervous system and a persistent marker of neural stem cells. Recent studies suggested a role of SOX2 in tumor progression. In our previous work we detected SOX2 in glioma cells and glioblastoma specimens. Herein, we aim to explore(More)
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Experimental evidence indicates that glutamate receptor antagonists may limit tumor growth. This study explores expression of glutamate receptor subunits in pediatric CNS tumors. Samples from eight ependymomas, four glioblastomas, six medulloblastomas and eight(More)