Achim Hartschuh

Learn More
Graphene edges are of particular interest since their orientation determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with edges oriented at different crystallographic directions. We also develop a real space theory for Raman scattering to analyze the general case of disordered edges. The position, width,(More)
The field near a sharp metal tip can be strongly enhanced if irradiated with an optical field polarized along the tip axis. We demonstrate that the enhanced field gives rise to local second-harmonic (SH) generation at the tip surface thereby creating a highly confined photon source. A theoretical model for the excitation and emission of SH radiation at the(More)
Single-molecule fluorescence spectroscopy was used to determine the electronic properties of individual single-walled carbon nanotubes. Carbon nanotube structure was determined simultaneously from Raman spectroscopy. Fluorescence spectra from individual nanotubes with identical structures have different emission energies and linewidths that likely arise(More)
We investigate graphene and graphene layers on different substrates by monochromatic and white-light confocal Rayleigh scattering microscopy. The image contrast depends sensitively on the dielectric properties of the sample as well as the substrate geometry and can be described quantitatively using the complex refractive index of bulk graphite. For a few(More)
We present near-field Raman spectroscopy and imaging of single isolated single-walled carbon nanotubes with a spatial resolution of approximately 25 nm. The near-field origin of the image contrast is confirmed by the measured dependence of the Raman scattering signal on tip-sample distance and the unique polarization properties. The method is used to study(More)
We show that strong photoluminescence (PL) can be induced in single-layer graphene using an oxygen plasma treatment. The PL is spatially uniform across the flakes and connected to elastic scattering spectra distinctly different from those of gapless pristine graphene. Oxygen plasma can be used to selectively convert the topmost layer when multilayer samples(More)
The dynamics of excitons in individual semiconducting single-walled carbon nanotubes was studied using time-resolved photoluminescence (PL) spectroscopy. The PL decay from tubes of the same (n,m) type was found to be monoexponential, however, with lifetimes varying between less than 20 and 200 ps from tube to tube. Competition of nonradiative decay of(More)
Owing to their influence on electrons and phonons, defects can significantly alter electrical conductance, and optical, mechanical and thermal properties of a material. Thus, understanding and control of defects, including dopants in low-dimensional systems, hold great promise for engineered materials and nanoscale devices. Here, we characterize(More)
We observe localization of excitons in semiconducting single-walled carbon nanotubes at room temperature using high-resolution near-field photoluminescence (PL) microscopy. Localization is the result of spatially confined exciton energy minima with depths of more than 15 meV connected to lateral energy gradients exceeding 2 meV/nm as evidenced by(More)