Learn More
Estrogen receptor α (ERα) upregulation causes abnormal cell proliferation in about two thirds of breast cancers, yet understanding of the underlying mechanisms remains incomplete. Here, we show that high expression of the microRNA miR-375 in ERα-positive breast cell lines is a key driver of their proliferation. miR-375 overexpression was caused by loss of(More)
The ratio of noncoding to protein coding DNA rises with the complexity of the organism, culminating in nearly 99% of nonprotein coding DNA in humans. Nevertheless, a large portion of these regions is transcribed, creating the alleged paradox that noncoding RNA (ncRNA) represents the largest output of the human genome. Such a complex scenario may include(More)
Mechanisms of cellular memory control the maintenance of cellular identity at the level of chromatin structure. We have investigated whether the converse is true; namely, if functions responsible for maintenance of chromosome structure play a role in epigenetic control of gene expression. We show that Topoisomerase II (TOPOII) and Barren (BARR) interact in(More)
The proteins of the Polycomb group (PcG) are required for maintaining regulator genes, such as the homeotic selectors, stably and heritably repressed in appropriate developmental domains. It has been suggested that PcG proteins silence genes by creating higher-order chromatin structures at their chromosomal targets, thus preventing the interaction of(More)
Tet enzymes (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in various embryonic and adult tissues. Mice mutant for either Tet1 or Tet2 are viable, raising the question of whether these enzymes have overlapping roles in development. Here we have generated Tet1 and Tet2 double-knockout (DKO) embryonic stem cells (ESCs) and mice.(More)
To maintain cell identity during development and differentiation, mechanisms of cellular memory have evolved that preserve transcription patterns in an epigenetic manner. The proteins of the Polycomb group (PcG) are part of such a mechanism, maintaining gene silencing. They act as repressive multiprotein complexes that may render target genes inaccessible(More)
RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However,(More)
DNA methylation plays an important role in the self-renewal of hematopoietic stem cells and in the commitment to the lymphoid or myeloid lineages. Using purified CD34⁺ hematopoietic progenitor cells and differentiated myeloid cell populations from the same human samples, we obtained detailed methylation profiles at distinct stages of hematopoiesis. We(More)
Differentiation is accompanied by extensive epigenomic reprogramming, leading to the repression of stemness factors and the transcriptional maintenance of activated lineage-specific genes. Here we use the mammalian Hoxa cluster of developmental genes as a model system to follow changes in DNA modification patterns during retinoic acid-induced(More)
The abnormal oocyte (abo) gene of Drosophila melanogaster is a peculiar maternal effect gene whose mutations cause a maternal-effect lethality that can be rescued by specific regions of heterochromatin during early embryogenesis. Here we show that abo encodes an evolutionary conserved chromosomal protein that localizes exclusively to the histone gene(More)