Learn More
Leaves are the final site of salinity perception through the roots. To better understand how wheat chloroplasts proteins respond to salt stress, the study aimed to the physiochemical and comparative proteomics analysis. Seedlings (12-days-old) were exposed to 150 mM NaCl for 1, 2, or 3 days. Na+ ions were rapid and excessively increase in roots, stems and(More)
We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767(More)
Microarray expression data, which contain expression levels of a large number of simultaneously observed genes, have been used in many scientific research and clinical studies. Due to its high dimensionalities, selecting a small number of genes has shown to be beneficial for tasks such as building prediction models for molecular classification of cancers.(More)
Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput "Omics" techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the(More)
Breast cancer is the most common type of cancer in women in many areas and is increasing found in developing countries, where the majority of cases are diagnosed in late stages. Retinoic acids, through their associated nuclear receptors, exert intoxicating effects on cell growth, differentiation and apoptosis, and hold significant promise in relation to(More)
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the(More)
Copper (Cu) is an essential micronutrient required for normal growth and development of plants; however, at elevated concentrations in soil, copper is also generally considered to be one of the most toxic metals to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological and(More)
Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to(More)